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1. Internal EPA Reanalysis of Published Studies

Ozone: reanalysis of selected data from Adams (2006, 2002)

o Used to conclude clinical effects at 0.06 ppm and to support the
2008 EPA NAAQS decision

NO,: reanalysis of clinical studies on airway hyper-responsiveness

o Used to conclude clinical effects at 100 ppb and to support EPA’s
proposed range for a NAAQS of 80-100 ppb

S0,: reanalysis of human clinical studies by Linn et al. (1987, 1983)

o Used to conclude clinical effects at 200 ppb and to support EPA's
proposed range for a NAAQS of 50-75 ppb



2. Transparency, Disclosure of Critical Studies/Analyses

Ozone: Reanalysis of selected data from Adams (2006, 2002)

o Placed in the docket after the close of the Staff Paper and six
days before the NPRM

NO,: Updated “meta analysis” of NO,

o Included for the first time in the final ISA thereby precluding
opportunity for public comment during the ISA review

SO,: Reanalysis of clinical studies by Linn et al. (1987, 1983)

o Included for the first time in final ISA thereby precluding
opportunity for public comment during the ISA review



3. Interpreting and Presenting Scientific Information

Studies excluded based on unclear criteria
o Abrahamowicz (2003) reports thresholds for chronic PM mortality
o Schildcrout (2006) reports no association: O,;, asthma symptoms

Same study reported differently across NAAQS reviews
o Schildcrout reports asthma symptoms for NO, but not O,
described as high quality study in NO, ISA, poor quality study for O,

o Delfino (2002) reports asthma symptoms for peak PM,, exposure
results used to support PM and NO,, alone, as causative agents

Data used for purpose for which it was not intended

o Human clinical studies designed to test group responses used to
assess results for individuals

Unproven hypothesis used to explain study inconsistencies

o Mortimer (2004) only reported positive association in children on
medication: hypothesis — these children have higher level of disease

o Delfino (2002) only reported positive association in children not on
medication: hypothesis — these children are less protected



4. Limitations of Observational Epidemiology Studies

Technical concerns with observational studies

o Reliance on ambient measures as a surrogate for personal exposure
HEI studies (Sarnat 2001, 2005, 2006) raise serious concerns for gases

o Lack of accepted model specification criteria
o Overstating the robustness of the models
a2 Using the highest/most significant results
o Reliance on small and non statistically significant results

Over-reliance on observational studies to assess causality and risks
o HEI 1997: not possible to identify individual pollutants as causal
2 HEI 2003: not possible to determine appropriate model specification
2 HEI 2009: unexplained regional heterogeneity; no model agreement

Over-reliance on single pollutant results to assess causality and risks
results in double/multiple counting of the risks of air pollution



5. Criteria for Determining Adverse Effects

EPA has lowered the criteria for what they consider as mild, moderate,
severe reductions in lung function

SO,: Criteria for lung function and symptoms

o Threshold for adversity lowered by considering a moderate change
in lung function alone or increased symptoms alone as adverse

o Inconsistent with medical expert advice (ATS)

NO,: Criteria for Airway Hyper-responsiveness

o Effects on AHR considered adverse even though no concentration
response was observed and the actual changes in pulmonary
function were very small (average FEV, decrease 1.5%)
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Potential Process Improvements

1. and 2. Internal Reanalysis of Data and Transparency

Sufficient time should be provided to allow internal analysis to be
peer-reviewed/published before they are used in a NAAQS decision

3. Interpreting and Presenting Scientific Information

Well-designed studies with both positive and negative results
should be considered in NAAQS decisions and a more consistent
review of studies should be provided

4. Limitations of Observational Studies

An improved weight-of-evidence approach should be developed
that considers the strengths and weaknesses of observational
studies and provides more weight to individual level epidemiology,
clinical, toxicology, and mechanistic studies

A more complete uncertainty analysis should be developed that
captures quantitative impacts of key factors

5. Criteria for Determining Adverse Effects
Deference given to accepted clinical standards of adversity
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NO, and Airway Hyper-responsiveness
 US EPA conducted an analysis of controlled
exposure studies in asthmatics

— Concluded for the first time that short-term exposure

to 0.1 ppm NO, can cause increases in response to
non-specific airway challenges

— Usgd to support US EPA’s proposed NAAQS of 80-100
PP

 Goodman et al. (2009) conducted more rigorous
analysis

— Found no evidence to suggest that NO, leads to
significant adverse effects at any of the exposures
tested, up to 0.6 ppm

— Does not support US EPA’s proposed NAAQS
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Airway Hyper-responsiveness (AHR)

* Exaggerated airway-narrowing response to
many environmental triggers, such as allergens
and exercise; characteristic of asthma

* Normally measured by histamine or
methacholine challenge

» Studies reviewed compared AHR after exposure
to NO, vs. air

 What denotes an “adverse” clinically relevant
effect is subjective
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US EPA Analysis of AHR in Controlled
Human Exposure Studies

e Evaluated the fraction of individuals in each
study with increased AHR after NO, exposure

vs. air

» Tested for statistical significance using a “sign
test”

— Essentially looked at how many people had increased
vs. decreased AHR after NO, vs. air

* Concluded there was a statistically significant
increase in AHR

L
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Limitations of US EPA Analysis

» Has not undergone peer-review

» Because first appeared in final ISA, not informed by
public comment

* Methods are not fully transparent
— Inclusion/exclusion criteria for studies not stated
— Data included/excluded from individual studies not stated
— No sensitivity analyses

» Use of sign test to evaluate statistical significance is
iInappropriate

* No evaluation of the magnitude of AHR as a function of
NO, exposure

— Many subjects may have experienced a small, but not clinically
relevant, change

— Could not evaluate exposure-response

¥ Gradient .
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Goodman et al. (2009) Meta-Analysis

e Comprehensive literature search conducted by
professional Information Research Specialist

— Final dataset included data from 26 studies; 38
exposure scenarios

 |nclusion/exclusion criteria and analysis
methods established a priori

e Evaluated three measures of AHR:

— Fraction of subjects with increased AHR
* PDyoz < PDye or AFEV, yop < AFEV, i

— Change in provocative dose (APD)

— Change in AFEV, (AAFEV,)
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Goodman et al. (2009) Meta-Analysis
(cont.)

» Conducted meta-analysis for whole dataset, and
stratified by

— Airway challenge (specific/non-specific)
— Exposure method (mouthpiece/whole chamber)
— Activity level during exposure (rest/exercise)

* Conducted meta-regressions to assess
exposure-response

e Conducted influence and sensitivity analyses

* Peer-reviewed and published in Critical Reviews
in Toxicology

]
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Goodman et al. (2009) Results

» Small, statistically significant associations for
overall meta-analysis

* Magnitude of effects is similar between 0.1 and
0.6 ppm NO,

* Individual studies with multiple exposure
concentrations have not observed exposure-
response association

 « Meta-effects on two measures of AHR, APD and
AAFEV,, are not adverse

— AAFEV, of -1.75% vs. adverse effect of -10%
— APD, of -27% vs. adverse effect of -50%

Il
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Meta-Analysis Conclusions

* NO, is not associated with clinically relevant
effects on AHR at exposures up to 0.6 ppm
— Small magnitude of effects
— Lack of exposure-response

» Conclusions consistent with WHO (2005):

— “[T]he small size of the decrements and concerns
expressed over the level of statistical significance of
some of these results suggest that great caution
should be exercised in accepting these findings as
demonstrating acute effects.”

' Gradient




Epidemiology Studies Do Not Support a Causal
Association Between NO, and Respiratory Effects

» Statistically significant findings are not large,
robust, or consistent

» Most studies report statistically significant
findings in single- but not multi-pollutant models

* NO, could be surrogate for other traffic
pollutants, particles, fungi, pollen, relative
humidity, and maximum temperature

e Use of measurements from central monitors
likely leads to high degree of exposure
misclassification

5||
{

P

™ Gradient e F



L

Overall Conclusions

» Clinical studies do not support adverse
effects at exposures up to 0.6 ppm

* Epidemiology studies do not support
adverse effects at ambient exposures

" Gradient —
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EPA Air Quality Trends Report - 2008 o

s Ozone - 275 sites (4" maximum 8-hour average)

NAAQS at the time

e PM, s - 752 sites (annual average)

h;;E:\““\//N\

-20% - - e PM,, - 391 sites (2"Y maximum 24-hour average)
- ——— NO, - 87 sites (annual average)
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] . S0, - 154 sites (annual average)
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Comparison of national levels of the six principal pollutants to National Ambient Air Quality Standards (NAAQS).
National levels are average across all sites.
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Risk Analysis, Vol. 22, No. 6, 2002

Exposure Misclassification and Threshold Concentrations
in Time Series Analyses of Air Pollution Health Effects

M. Brauer,”* J. Brumm,2 S. Vedal,? and A. J. Petkau®

Linear, no-threshold relationships are typically reported for time series studies of air pollu-
tion and mortality. Since regulatory standards and economic valuations typically assume some
threshold level, we evaluated the fundamental question of the impact of exposure misclas-
sification on the persistence of underlying personal-level thresholds when personal data are
aggregated to the population levelin the assessment of exposure-response relationships. Asan
example, we measured personal exposures to two particle metrics, PM; s and sulfate (SO%7),
for asample of lung disease patients and compared these with exposures estimated from ambi-
ent measurements. Previous work has shown that ambient:personal correlations for PM; s are
much lower than for SO}~, suggesting that ambient PM, s measurements misclassify exposures
to PM;s. We then developed a method by which the measured:estimated exposure relation-
ships for these patients were used to simulate personal exposures for a larger population and
then to estimate individual-level mortality risks under different threshold assumptions. These
individual risks were combined to obtain the population risk of death, thereby exhibiting the
prominence (and the value) of the threshold in the relationship between risk and estimated
exposure. Our results indicated that for poorly classified exposures (PM; s in this example)
population-level thresholds were apparent at lower ambient concentrations than specified
common personal thresholds, while for well-classified exposures (e.g., SO3”), the apparent
thresholds were similar to these underlying personal thresholds. These results demonstrate
that surrogate metrics that are not highly correlated with personal exposures obscure the pres-
ence of thresholds in epidemiological studies of larger populations, while exposure indicators
that are highly correlated with personal exposures can accurately reflect underlying personal
thresholds.

KEY WORDS: Exposure assessment; exposure misclassification; environmental exposure; time series;
air pollution; threshold: exposure-response

1. INTRODUCTION

1 University of British Columbia, School of Occupational and En-
vironmental Hygiene and School of Medicine.

2 University of British Columbia, Department of Statistics.
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dress: National Jewish Medical and Research Center, Division
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tal Hygiene, 2206 East Mall, Vancouver BC VAT 1Z3 Canada;
tel.: (604) 822-9585; fax: (604) 822-9588; brauer@interchange.
ubc.ca.

Numerous time series studies have indicated that
current levels of air pollution are associated with ad-
verse health outcomes, including daily mortality,(-)
These studies have been conducted in a variety of lo-
cations, using a variety of data analytic approaches,
and have been performed by different investigators.
In nearly all cases, the studies suggest a linear associa-
tion between air pollution and increased risk of death,
with no apparent threshold.®

0272-4332/02/1200-1183$22 00/1 © 2002 Society for Risk Analysis
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Although these epidemiological studies appear
to withstand criticism focused on statistical method-
ology, coherence of results, and limitations of admin-
istrative health outcome data, they have generally re-
lied on estimates of exposure in which the ambient air
pollution concentration on each day is used to rep-
resent the exposure of the entire study population.
Estimating individual exposure to air pollutants from
central outdoor pollution monitors may result in con-
siderable error.®>® The accuracy of using central out-
door air pollution monitors as indicators of personal
exposure is one component of measurement error in
such epidemiological studies.

The impacts of measurement error om the
exposure-response relationship have been addressed
recently by Zeger and colleagues,’) who present a
framework for evaluating the impact of measurement
error and describe how the inadequate characteri-
zation of personal exposure can bias the magnitude
of the effect estimates in time series epidemiologi-
cal studies of ambient air pollution. Carrothers and
Evans described how differential measurement error
of multiple pollutants can lead to biased regression
coefficients.® In addition to the impact on effect esti-
mates, measurement error may also affect the ability
to observe a threshold level, should one exist.

Cakmak and colleagues performed simulations
to evaluate whether nonparametric smoothing is ca-
pable of detecting population-level thresholds in the
presence of exposure measurement error.®) Spe-
cific functional forms for the relationship between
population-level risk and ambient concentrations
were assumed and then simulated Poisson-distributed
death counts corresponding to simulated log-normal
ambient concentration levels were analyzed. These
simulations examined the ability of different data
analytic approaches (nonparametric smoothing and
weighted nonlinear regression) to detect and estimate
threshold concentrations in the presence of exposure
measurement error.

In contrast, we focus specifically on the more fun-
damental question of the impact of exposure misclas-
sification on the persistence of underlying personal-
level thresholds when personal data are aggregated to
the population level. The ability to identify a thresh-
old level is critical to economic valuations® and to
regulatory standards.'? The issue of thresholds for
time series studies of particulate air pollution has re-
cently been examined in combined analyses of time
series data from multiple cities.(!>!® Consistent with
time series analyses from individual cities, these analy-
ses have indicated that no population-level threshold
is apparent when flexible modeling approaches are

Brauer et al.

applied to the data, In this article we use measured
personal exposures in a simulation approach to ex-
amine the extent to which exposure misclassification
may obscure the presence of a threshold concentra-
tion in ecologic exposure-response relationships.

The inability to observe a threshold may be due,
in part, to the fact that there is a distribution of indi-
vidual exposures in a population.®*1) If one assumes
that allindividualsin a population have the same func-
tion relating risk of an effect to the ambient pollutant
concentrations, then in a population as a2 whole there
will always be some observed effect, even for very low
concentrations. This is because some individuals in the
population will have greater exposures than others for
any given ambient concentration and this will there-
fore result in a distribution of risks. Therefore, even if
a common underlying threshold does in fact exist at
an individual level, it may not be possible to observe
it in a study that uses ambient concentrations to esti-
mate individual exposures. The simulations reported
here are intended to quantify the extent to which this
may occur.

Accordingly, we repeatedly measured individual
personal exposures of a panel of chronic obstruc-
tive pulmonary disease (COFPD) patients and eval-
nated the impact of different exposure estimates on
the population exposure-response relationship. As an
example, we measured personal exposure to particle
mass and compared this with sulfate, which is a better
marker of exposure to ambient particles than fine par-
ticle mass (PMz5).4%17) Using the exposure data, we
then performed simulations to evaluate whether en-
hanced assessment of individual exposure improves
correspondence between an underlying common in-
dividual threshold and the population-level threshold.
In the process of illustrating this example we provide
a general empirical methodology for addressing this
general issue.

2. METHODS
2.1. Exposure Monitoring

Sixteen subjects, ages >60 years, currently non-
smokers and currently not living with a smoker, with
physician-diagnosed moderate COPD were recruited
for the exposure monitoring study. Personal (24-hour)
particulate (PM,s and SOi') exposures were then
monitored during 5-7 measurement sessions, Tan-
domly spaced approximately 1.5 weeks apart. De-
tails are reported elsewhere.'®) Ambient PM, s and
SO} concentrations were measured during periods
corresponding to the personal monitoring sessions
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at five fixed-location monitoring stations within the
Vancouver, Canada study region.

2.2. Modeling and Simulation

Our approach involves the estimation of the re-
lationship between personal exposure and ambient
(PM;s and sulfate) concentration, followed by sim-
ulation of the relationship between personal expo-
sure and risk, here defined as the probability of death
[Pr(death)]. The sequential approach includes analy-
sis of the measured exposure data, the application of
these estimated relationships to a larger population,
modeling the individual-level relationship between
exposure and risk of death, and two final components
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focused on the simulation of the population average
risk of death.

2.2.1. Modeling Assumptions

2.2.1.1. Analysis of the Relationship Between
Ambient Concentration and Personal Exposure. For
the purposes of this illustration, we assume that the
relationship between personal exposure and ambient
concentration for each individual is linear. Different
individuals can have different slopes and intercepts
describing this relationship and the variability of the
residuals can also be different from individual to
individual. These modeling assumptions are moti-
vated by the form of the measured PM; s and sulfate
data for the 16 subjects (Figs. 1 and 2). However, the
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Fig. 1. Regression relationships for personal:ambient PMy 5 (zg/m®) for 16 subjects. Subject ID numbers are listed above each individual
plot and correspond to those indicated in Fig. 2. The y-axes denote the measured personal exposure level and the x-axes the corresponding
measured ambient concentration.
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Fig. 2. Regression relationships for personal:ambient sulfate (ug/m®) for 16 subjects. Subject ID numbers are listed above each individual
plot and correspond to those indicated in Fig. 1. The y-axes denote the measured personal exposure level and the x-axes the corresponding

measured ambient concentration.

same methodological approach could also be used
with different modeling assumptions (e.g., nonlinear
relationships).

More precisely, from the 5-7 days of personal
monitoring data collected for each of the 16 subjects
(i), we fit a linear relationship between the ambient
concentration (A) and personal exposure (E) on all
days ( j), based on the simple model

Eij=ai +BiA; +sij, (1)

where &;; is the error associated with the fitted rela-
tionship for the ith subject on day j. We assume that
this error has variance o2. This variance parameter in-
dicates the extent to which exposures of the ithsubject
track ambient concentrations and has particular rel-

evance 1o longitudinal studies of air pollution health
effects. As indicated in Figs. 1 and 2, variances did ap-
pear to be different across individuals, as one might
expect given the multiple factors that contribute to
exposures. «; and 8; describe the linear relationship
between the ambient concentration and personal ex-
posure for the i th subject and illustrate exposure mis-
classification in cross-sectional study designs that esti-
mate exposures of an entire community with a single
ambient monitoring station.

2.2.1.2. Distributional Assumptions to Simulate a
Larger Population. The data analysis of the previous
step gives us 16 triplets of estimates for the inter-
cepts o, the slopes §;, and the error variances or,-z.We
now create a simulated personal exposure profile
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corresponding to any particular ambient concentra-
tion. We assume that the pairs of intercepts and
slopes are a sample from a bivariate normal distri-
bution and the standard deviations from an indepen-
dent log-normal distribution. To simulate a popula-
tion of triplets that represent individuals, we draw a
pair of values from the bivariate distribution of inter-
cepts and slopes and then independently draw a value
from the distribution of error variances. We had in-
sufficient data to support a particular form of depen-
dence between the variances and slopes/intercepts
and therefore assumed that these distributions were
independent. This assumption enabled us to describe
the distribution of the parameters over the population
of individuals in a relatively simpler form. Assum-
ing a trivariate distribution of slopes, intercepts, and
variances, which also incorporated such dependence,
would provide a more comprehensive approach but
also would require a substantially larger data set to
support the necessary modeling. The means, vari-
ances, and co-variances of these distributions are
set equal to the sample means, variances, and co-
variances based on the 16 COPD subjects (Table T,
Figs. 1 and 2). At any particular ambient concentra-
tion A;, the personal exposure Ej; for the ith indi-
vidual in this population is then simulated according
to Equation (1), where the errorE;; is simulated as

Gaussian with a mean of 0 and variance o?.

2.2.1.3. Assumed Form of the Relationship Be-
tween Individual Risk and Personal Exposure with a
Given Threshold, 5. We model the relationship be-
tween the probability of death for the ith individual
(P) and personal exposure ( E;) as a deterministic re-
lationship P = 1(E;), where ¢(-) is a piecewise linear

Table I. Parameters of PM; 5 and Sulfate Distributions of
Personal Exposure: Ambient Concentration Relationships (as
Depicted in Figs. 1 and 2) Used in Simulations

Parameter Mean Standard Deviation

PMzs
Slope 0.27 1.78
Intercept 14.75 22.85
Log SD 1.86 0.79
*Slope-intercept r —0.84

Sulfate
Slope 0.74 023
Intercept 0.03 037
Log SD —1.61 0.48
Slope-intercept r -0.72

*The slope-intercept r refers to the correlation coefficient between
the estimated slopes and intercepts.
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threshold function (Fig. 3) of the form:

(E)y=y1+w(E-8) if E>$§
and (2
t(Ey=n if E<$§

Here we assume that all individuals have a com-
mon threshold § that is determined in advance; be-
low this threshold the probability of dying is constant
at the baseline level j1. If the personal exposure ex-
ceeds this threshold §,the risk increases linearly with
slope y;. In a real population one might expect a
distribution of individual-level thresholds (8), and of
exposure-response relationships (). Together, these
components determine an individual’s susceptibility
to a given exposure. For the purposes of our simula-
tions, however, we assumed a common threshold and
exposure-response relationship for all individuals so
as to isolate the impact of variable exposures on the
relationship between population risk and the ambient
concentration.

2.2.2. Simulation

2.2.2.1. Obtain the Population Risk for the Sim-
ulated Population at a Given Ambient Concentration
for a Particular Threshold Function (Fixed Values of
8, y1, and y;). We now simulate the individual risks
(P;) at a given ambient level A. The simulated value
of P,(A) = Pr(death of individual i | ambient concen-
tration = A) is denoted by P;(A). We use the sam-
pled values of the regression parameters, from Section
2.2.1.2, to obtain the personal exposures for the sim-
ulated population, which in turn are translated into
individual risks with the threshold function shown in
Equation (2).

‘We denote the population probability of death
(the probability of death at an ambient concentration
A for a randomly chosen individual from the popula-
tion) by P(A) = Pr(death | ambient concentration =
A). A given ambient level leads to a distribution
of personal exposures in the simulated population,
which in turn determines the distribution of the indi-
vidual probabilities of death F, = F,(A). We estimate
the population probability of death at each ambient
concentration A as the average of the simulated indi-
vidual probabilities at that ambient concentration:

1 n
P(A) ==~ R4 3)
i=1
The size of the simulated population (n = 10,000) was

chosen to be large enough to control the estimation
error involved.
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P (Personal risk [arbitrary scale])

T A

Brauer et al.

Slope =1,

E (Personal exposure [PM2.5 or sulfate])

Fig. 3. Illustration of an underlying (individual-level) threshold function.

2.2.2.2. Calibrate the Relationship Between Am-
bient Exposure and Population Risk. By simulating
population risks as described above for a sequence
of ambient concentrations, we obtain a relationship
between ambient concentration and population risk.
To get realistic values for the parameters y; and y;
of the threshold function of Equation (2), we var-
ied these parameters until we obtained a relationship
between population risk and ambient concentrations
that was compatible with mortality rates in the Van-
couver area. For the choice of § = 0, the values of
y1 and y;, are varied and the simulation in Section
2.2.2.1 above is repeated until the simulated popula-
tion probability of death for an ambient concentra-
tion of 0 ug/m® matches the baseline daily mortality
(17 per 1,000,000) of the Vancouver area (15) and the
percent increase per unit of ambient concentration in
the simulation study matches a target risk function,
the mortality risk estimates from the WHO Air Qual-
ity Guidelines:(1D

% increase in daily mortality = 0.151* PM; 5
% increase in daily mortality = 0.60* sulfate

We then used these parameter values (; = 1.70 x
1076 and 1.70 x 10°, y» = 7.99 x 10~° and 3.20 x
10-# for PM,s and sulfate, respectively) in all the
simulations.

Initially, we specify only the functional form and
we fix the threshold value. We then perform simula-
tions for different values of § to explore the impact of
this parameter on the population risk-ambient con-
centration relationship.

‘With this approach, we illustrate the extent to
which a common individual-level threshold is ob-
scured by the error in using ambient concentrations as
surrogates for personal exposure. In this way, we can
determine, for example, that if a common underlying
individual-level threshold exists, it would have to be
above a certain concentration to manifest itself at the
population level.

3. RESULTS

Figs. 1 and 2 display the personal exposure versus
ambient concentration relationships measured for the
16 subjects for PM; s and sulfate, respectively. The dis-
tributions of the key features of these regression fits
are summarized in Table I. Note that the intercept
term, which describes the personal exposure at an
ambient concentration of 0, is much higher for PM, 5
than for sulfate, due to the impact of indoor sources
and personal activities on personal exposure to PM; s.
Also note that the standard deviation of the slopes is
much larger for the PM; 5 relationships, reflecting the
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much greater consistency across subjects in the sulfate
relationships apparent in Figs. 1 and 2.

Fig. 4(a—c) depicts some of the results of the sim-
ulation for PM> s. Here, three individual-level thresh-
olds (20, 40, and 60 ug/m?) were specified and the re-
sulting population risk is plotted against the ambient
particle levels. No threshold is apparent on a popu-
lation basis if an individual threshold of 20 pug/m” is
specified (Fig. 4(a)). Even at higher individual-level
thresholds, the apparent threshold at the population
level is 20-30 ug/m® lower than the specified per-
sonal threshold (Fig. 4(b—)). In contrast, for sulfate
(Fig. 5(a—)), the personal-level thresholds closely
match the population-level thresholds.

4. DISCUSSION

In these simulations we have demonstrated that
the use of surrogate measures that are not highly
correlated with personal exposures can obscure a
threshold at the population level, even if a common
threshold exists for individuals within the population.

However, if exposure misclassification is reduced by
the use of appropriate exposure metrics (in this ex-
ample, measured exposures that are highly correlated
with ambient concentrations), then common underly-
ing individual thresholds result in similar population-
level thresholds. Although we have conducted these
simulations for data regarding ambient particulate air
pollution, the same principles apply to any situation
where exposure is misclassified by the use of surrogate
measures to estimate individual exposures. In the Ap-
pendix we describe an analytic derivation of the rela-
tionship between personal exposure and population-
level risk.

In our simulations we have assumed that all indi-
viduals in a population have the same threshold con-
centration and the same slope of their concentration-
response relationship. This simple situation was
examined as it was our intention to isolate the poten-
tial impact of exposure misclassification on thresh-
old detection. The simulation and the analytic solu-
tion could also be generalized to incorporate a more
realistic scenario with a distribution of individual
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susceptibilities (both slopes and thresholds), although
that wns not the purpose of this exercise. The ob-
SCuri: . wesholds, as observed in our simulations,
would clea:ly be cven greater if the simulations incor-
porated thresholds that vary across individuals. Our
simulations also focused on a single dose-response
function to illustrate the methodology and general
findings in one specific, simple, yet realistic, scenario.
Our goal was to present a general empirical method-
ology that could also incorporate alternative assump-
tions, such as other dose-response functions.
Althoughitis generally understood that measure-
ment error and, more specifically, exposure misclas-
sification, can lead to biased estimates of effect, the
impact on thresholds has received less attention. Watt
and colleagues measured PM;o exposures of traffic
officers and used these data to assess the effect of
exposure estimates based on ambient concentrations
on the shape of the air pollution exposure-response
curve.!) Personal exposures were 6-10 times higher
than ambient measurements and, in a limited simu-

lation, this difference had the effect of almost com-
pletely obscuring the assumed threshold for health ef-
fects. Here we have built on that preliminary study by
generalizing the model used in the simulations and by
comparing ambient concentrations and personal ex-
posures for the same particle measurements, over the
same averaging period, in a group that is representa-
tive of individuals affected by particulate air pollution.

Although the comparison between PM; s and sul-
fate is presented here as an example, readers may infer
that personal PM;s exposure is the “gold standard”
against which PM; s measured at central monitoring
sites is to be compared. In truth, the gold standard for
ambient PM; s is that component of personal PM; s
that is due to exposure to ambient PM; s.08) Sources
of personal PM; s that do not derive from ambient
PM3 s, including all indoor sources, should not be con-
sidered when attempting to assess measurement error
resulting from the use of centrally monitored concen-
trations. Based on the relatively strong correlation be-
tween centrally monitored and personal sulfate, the
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correlation between centrally monitored PM; s and
that component of personal PM,s due to ambient
PM, s is also strong. Therefore, the specific findings
of this simulation do not apply to PM; s. The findings
do apply to pollutant measures for which the correla-
tion between centrally monitored concentrations and
personal exposures to the ambient pollutant are weak.
Carbon monoxide and ozone may be examples of such
pollutants.

5. LIMITATIONS

As discussed by Zeger and colleagues,” there are
many causes of exposure misclassification. Here we
have shown an example in which misclassification oc-
curs due to measurement error and the use of a non-
specific exposure metric. Using the general methodol-
ogy we have provided would show, for example, that
a reduction in the amount of measurement error in
our data would lead to improved agreement between
an underlying individual threshold and that based on
aggregated population-level data. Additional limita-
tions in the data that we used for the simulation are
the low concentrations that were measured in relation
to the thresholds that were assumed for the simula-
tions and the small number of repeated measurements
(5-7) for each subject. It is possible that for examples
with higher ranges of exposures the correlations be-
tween personal and ambient measurements would be
higher. As with the reduction in measurement error,
this would lead to a smaller difference between appar-
ent and underlying thresholds. Further, while it was
our intention to recruit more subjects and to collect
more repeat measurements, this was not feasible lo-
gistically. The simulations we have described could be
repeated if larger data sets become available. Finally,
the results of the simulation exercises depend on the
specific form of risk function that is used. In our ex-
ample we used a function from the WHO Air Qual-
ity Guidelines, although the methodology allows any
function to be used. These limitations indicate that
our quantitative results are sensitive to the input data
used. However, the methodology and analytical solu-
tion that we present are general and can be applied
to other data sets. Further, our general illustration
of the ability of exposure misclassification to obscure
thresholds remains despite these limitations.

6. CONCLUSION

The identification of threshold levels is impor-
tant for regulatory standards, risk assessments, and
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economic valuations, which are often incorporated
in cost-benefit analyses. Specifically, for environmen-
tal exposures such as air pollution, which tend to be
episodic, concentrations tend to be low for the ma-
jority of the time. In performing economic valuations
or risk assessments, a decision must be made as to
whether the given exposure-response relationship is
applied to low levels, or if some threshold is set under
which it is assumed that no effects occur.*?) Exactly
what level is chosen for this threshold can have a dra-
matic influence on the results of the assessment, since
concentrations in many locations are below these lev-
els most of the time. For standard setting, regulators
often are faced with a dilemma of incorporating epi-
demiological results that do not indicate a threshold,
with regulatory requirements that stipulate that a spe-
cific level should be indicated. The results described
in this simulation suggest that the inability to detect a
threshold in many epidemiological studies does not,
in fact, mean that no threshold exists. Further, the
results of this simulation imply that improved charac-
terization of exposure will improve the ability of epi-
demiological studies to identify threshold levels that
are consistent with those actually experienced by the
individuals in the study population.

APPENDIX
Evaluation of the Population Risk

The body of the article described how we simu-
lated a population of personal exposures that leads
to a distribution of individual risks and hence to an
estimate of the population risk (probability of death)
at a given ambient exposure level. Here we present
the corresponding analytical expressions.

In what follows, relationships are considered for
a fixed day, so the argument corresponding to the day
(j) is suppressed in all the expressions. We modeled
the personal exposure E; for the ith individual on a
day with ambient exposure Aas

E=oi+piA+s

where g; was assumed to be normally distributed with
mean 0 and variance o?. This assumption specifies the
conditional distribution of the personal exposure E;
given the ambient exposure A and the individual’s
vector of parameters 8; = (o, B;, 0;).

Individuals are characterized by their vector of
parameters ;, which are distributed across the pop-
ulation according to a trivariate density 7 (8;). In the
simulations, we assumed that the slope and intercept
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parameters («;, 8;) were bivariate normal and the
variances (af) were independently log-normal, in
which case x(8;) factors into a product of bivariate
normal and log-normal densities.

The probability of death for the ith individual,
P, was modeled as a deterministic function ¢(:) of
the personal exposure: P; = t(E) = t(aj + fi A+ &),
The error term ¢; in this expression implies that, given
the individual’s vector of parameters 8;, the probabil-
ity of death for the ithindividual is a random quantity.
Thus, interest focuses on the expected probability of
death for the ith individual, which is given by

P(A| 6;) = f t(a; + Bi A+ 0;2)¢(z)dz,

the quantity estimated by the simulated individual
risk P;(A); see Equation (3). The corresponding ex-
pected population risk (probability of death) is given
by

P(4) = f P(A| 8:)r:(6:)d6;

the quantity estimated by P(A) of Equation (3).
For the special case (2) of the threshold function
t(-) used in the simulations, we have

8 — (@ +ﬁsA))

P(A|&)=n+ }’20;"1’( =

where W(u) = ¢(u) — u[l — d(1)], with ¢(-) and &(-)
the standard normal density and distribution func-
tion, respectively. Evaluation of the expected popu-
lation risk when the ambient exposure is A then re-
quires three-dimensional integration of this function
with respect to 7 (8;), the joint trivariate distribution
of the parameters. Some simplification results from
the assumption made in the simulations that o; is dis-
tributed independently of («;, B;), but this evaluation
(and the simulations) would be no more difficult for
other choices of distributions for these parameters.

‘We modeled the relationship between the per-
sonal exposure and the individual risk as a determin-
istic threshold function ¢(-) that is the same for all in-
dividuals. This could easily be generalized in a variety
of ways, but we do not pursue this here.

This Appendix has focused on evaluation of the
expected population risk (probability of death) as that
is the function estimated in the simulations reported
in the article. Expressions could also be obtained for
other functions of the distribution of personal expo-
sures. For example, an expression for the distribution
of individual risks when the ambient exposure is A
could be obtained. In general, explicit evaluation of
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such expressions would still require multidimensional
integration.
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