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1. 	Internal EPA Reanalysis of Published Studies 

• 	 Ozone: reanalysis of selected data from Adams (2006, 2002) 
o 	 Used to conclude clinical effects at 0.06 ppm and to support the 

2008 EPA NAAQ5 decision 

• 	 N02 : reanalysis of clinical studies on airway hyper-responsiveness 
o 	 Used to conclude clinical effects at 100 ppb and to support EPA's 

proposed range for a NAAQ5 of 80-100 ppb 

• 	 502: reanalysis of human clinical studies by Linn et al. (1987, 1983) 
o 	 Used to conclude clinical effects at 200 ppb and to support EPA's 

proposed range for a NAAQ5 of 50-75 ppb 
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2. Transparency, Disclosure of Critical Studies/Analyses 


• Ozone: Reanalysis of selected data from Adams (2006, 2002) 
D Placed in the docket after the close of the Staff Paper and six 

days before the NPRM 

• N02: Updated "meta analysis" of N02 
D Included for the first time in the final ISA thereby precluding 

opportunity for public comment during the ISA review 

• S02: Reanalysis of clinical studies by Linn et al. (1987, 1983) 
D Included for the first time in final ISA thereby precluding 

opportunity for public comment during the ISA review 
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3. 	Interpreting and Presenting Scientific Information 

Studies excluded based on unclear criteria 
D Abrahamowicz (2003) reports thresholds for chronic PM mortality 
D Schildcrout (2006) reports no association: 0 3, asthma symptoms 

Same study reported differently across NAAQS reviews 

D Schildcrout reports asthma symptoms for N02 but not 0 3 


• described as high quality study in N02 ISA, poor quality study for 0 3 
D Delfino (2002) reports asthma symptoms for peak PM10 exposure 

• results used to support PM and N02, alone, as causative agents 

• 	 Data used for purpose for which it was not intended 
D 	 Human clinical studies designed to test group responses used to 

assess results for individuals 

.. Unproven hypothesis used to explain study inconsistencies 
D Mortimer (2004) only reported positive association in children on 

medication: hypothesis - these children have higher level of disease 
D Delfino (2002) only reported positive association in children not on 

medication: hypothesis - these children are less protected 
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4. Limitations of Observational Epidemiology Studies 

• Technical concerns with observational studies 
!:J 	 Reliance on ambient measures as a surrogate for personal exposure 

HEI studies (Sarnat 2001, 2005, 2006) raise serious concerns for gases 

o Lack of accepted model specification criteria 
o Overstating the robustness of the models 
o Using the highest/most significant results 
o Reliance on small and non statistically significant results 

• Over-reliance on observational studies to assess causality and risks 
o HE11997: not possible to identify individual pollutants as causal 
1:1 HEI 2003: not possible to determine appropriate model specification 
o HEI 	2009: unexplained regional heterogeneity; no model agreement 

Over-reliance on single pollutant results to assess causality and risks 
results in double/multiple counting of the risks of air pollution 
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5. Criteria for Determining Adverse Effects 


• 	 EPA has lowered the criteria for what they consider as mild, moderate, 
severe reductions in lung function 

• 	 S02: Criteria for lung function and symptoms 
o 	 Threshold for adversity lowered by considering a moderate change 

in lung function alone or increased symptoms alone as adverse 
o 	 Inconsistent with medical expert advice (ATS) 

• 	 N02: Criteria for Airway Hyper-responsiveness 
o 	 Effects on AHR considered adverse even though no concentration 

response was observed and the actual changes in pulmonary 
function were very small (average FEV1 decrease 1.5%) 
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Potential Process Improvements 

• 	 1. and 2. Internal Reanalysis of Data and Transparency 
...J 	 Sufficient time should be provided to allow internal analysis to be 

peer-reviewed/published before they are used in a NAAQS decision 

3. Interpreting and Presenting Scientific Information 
...J Well-designed studies with both positive and negative results 

should be considered in NAAQS decisions and a more consistent 
review of studies should be provided 

• 	 4. Limitations of Observational Studies 
.J An improved weight-of-evidence approach should be developed 

that considers the strengths and weaknesses of observational 
studies and provides more weight to individual level epidemiology, 
clinical, toxicology, and mechanistic studies 
A more complete uncertainty analysis should be developed that 
captures quantitative impacts of key factors 

• 	 5. Criteria for Determining Adverse Effects 
.J Deference given to accepted clinical standards of adversity 
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N02 and Airway Hyper-responsiveness 


• us EPA conducted an analysis of controlled 

exposure studies in asthmatics 

- Concluded for the first time that short-term exposure 

to 0.1 ppm N02 can cause increases in response to 
non-specific airway challenges 

-	 Used to support US EPA's proposed NAAQS of 80-100 
ppb 

• 	Goodman et a/. (2009) conducted more rigorous 
analysis 
- Found no evidence to suggest that N02 leads to 

significant adverse effects at any of the exposures 
tested, up to 0.6 ppm 

- Does not support US EPA's proposed NAAQS 
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Airway Hyper-responsiveness (AHR) 


• 	Exaggerated airway-narrowing response to 
many environmental triggers, such as allergens 
and exercise; characteristic of asthma 

• 	Normally measured by histamine or 
methacholine challenge 

• 	Studies reviewed compared AHR after exposure 
to N02 VS. air 

• 	What denotes an "adverse" clinically relevant 
effect is subjective 
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US EPA Analysis of AHR in Controlled 

Human Exposure Studies 


• 	Evaluated the fraction of individuals in each 
study with increased AHR after N02 exposure 

• 
VS. air 

• Tested for statistical significance using a "sign 
test" 
-	 Essentially looked at how many people had increased 

VS. decreased AHR after N02 VS. air 

• 	Concluded there was a statistically significant 
increase in AHR 
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Limitations of US EPA Analysis 

• 	 Has not undergone peer-review 
• 	 Because first appeared in final ISA, not informed by 

public comment 
• 	 Methods are not fully transparent 

- Inclusion/exclusion criteria for studies not stated 
- Data included/excluded from individual studies not stated 
- No sensitivity analyses 

• 	 Use of sign test to evaluate statistical significance is 
inappropriate 

• 	 No evaluation of the magnitude of AHR as a function of 
N02 exposure 
- Many subjects may have experienced a small, but not clinically 

relevant, change 

- Cou ld not evaluate exposure-response 
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Goodman et a/. (2009) Meta-Analysis 

• 	Comprehensive literature search conducted by 

professional Information Research Specialist 
- Final dataset included data from 26 studies; 38 

• exposure scenarios 

• 	 Inclusion/exclusion criteria and analysis 
methods established a priori 

• 	Evaluated three measures of AHR: 
- Fraction of subjects with increased AHR 

• PDN02 < PDAir or ~FEV1 ,N02 < ~FEV1 .Air 


- Change in provocative dose (L1PD) 


- Change in L1FEV1 (L1L1FEV1) 
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Goodman et al. (2009) Meta-Analysis 

(cont.) 


• Conducted meta-analysis for whole dataset, and 
stratified by 
- Airway challenge (specific/non-specific) 

- Exposure method (mouthpiece/whole chamber) 

- Activity level during exposure (rest/exercise) 

• 	Conducted meta-regressions to assess 
exposure-response 

• 	Conducted influence and sensitivity analyses 
• 	Peer-reviewed and published in Critical Reviews 

in Toxicology 

~ 
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Goodman et a/. (2009) Results 


• Small, statistically significant associations for 

overall meta-analysis 


• 	Magnitude of effects is similar between 0.1 and 
0.6 ppm N02 

• 	 Individual studies with multiple exposure 

concentrations have not observed exposure­

response association 


• 	Meta-effects on two measures of AHR, ~PD and 

MFEV1, are not adverse 

- LlLlFEV1 of -1.75% vs. adverse effect of -10% 

- LlPDg of -27% vs. adverse effect of -50% 
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Meta-Analysis Conclusions 


• 	N02 is not associated with clinically relevant 
effects on AHR at exposures up to 0.6 ppm 
- Small magnitude of effects 

- Lack of exposure-response 

• 	Conclusions consistent with WHO (2005): 
- "[TJhe small size of the decrements and concerns 

expressed over the level of statistical significance of 
some of these results suggest that great caution 
should be exercised in accepting these findings as 
demonstrating acute effects." 
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Epidemiology Studies Do Not Support a Causal 

Association Between N02 and Respiratory Effects 


• Statistically significant findings are not large, 

robust, or consistent 


• 	Most studies report statistically significant 

findings in single- but not multi-pollutant models 


• 	N02 could be surrogate for other traffic 

pollutants, particles, fungi, pollen, relative 

humidity, and maximum temperature 


• 	Use of measurements from central monitors 

likely leads to high degree of exposure 

misclassification 
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Overall Conclusions 


• Clinical studies do not support adverse 
effects at exposures up to 0.6 ppm 

• Epidemiology studies do not support 
adverse effects at ambient exposures 
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Exposure Misclassification and Threshold Concentrations 
in 'TIme Series Analyses of Air Pollution Health Effects 

M. Brauer,1. J. Brumm,: S. Vedal,] and A. J. Petka": 

Linear, Do-threshold relatiooships are typically reported for time series studics of air pollu­
lion and mortality. Since regulatory standards and economic valuations typically assumc$Ome 
threshold level. we evaluated the fundamental question of the impact of exposure miJdas­
silica-tioo 00 the persisteoce of underlyiog personal-level thresbolds wbeo penooal data are 
aggregated to the population level in the IlS$e$Smcnt of exposure-respoo!le relationships. ~ an 
example, we measured personal exposures to two panicle metrics, PMu and sulfate (50;-). 
(or a sample or lung disease patients and compared these witb exposures estimated fromambi­
ent measurements. Previous work: hasshowo that ambicot:penonai correlations for PMz.) ace 
much lower than for SO!- , $uggesting tbat ambient PMu measurements misclassifycxpo!iures 
to PMu. We tben developed a method by wbicb tbe mea$ure<i:estimated exposure relation­
ships for these patients were used to simulate personal exposures for a larger population and 
then to estimate individual-level mortality cislu under different threshold assumptions. These 
individual risks were combined to obtain the population risk of death, thereby exhibiting the 
prominence (and tbe value) of tbe threshold in tbe relationship between risk and estimated 
exposure. Qur re.~ults indicated that for poorly classified exposures (PM:u in this example) 
population-le vel thrcsholds were apparent at lower ambient concentrations tban specified 
common personal thresholds, while for well·classified exposures (e.g., SO~-), the apparent 
thresholds were similar 10 these underlying personal thresbolds. These results demonstrate 
tbat surmgate metria that are not higblyoolTeiated with personal exposures obscure the pres· 
ence of thresholds in epidemiological studies of larger populations, wbile CJlposure indicaton 
tbat are higbly cOlTeiated with personal exposures can accurately reDeet under lying personal 
thresholds. 
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L INlRODUcnON 

Numerous time series studies bave indicated tbat 
current levels of air pollution are associated with ad­
verse health outcomes, including daily mortality.(I-3) 
These studies have been conducted in a variety of lo­
cations, using a variety of data analytic approaches, 
and have been performed hy different investigators. 
In nearly aU cases, the studies suggest a linear associa­
lion between air pollution and increased risk of death, 
with DO apparent thrcshold.(4) 
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Although these epidemiological studies appear 
to withstand criticism focused on statistical method­
ology, coherence of results, and limitations of admin­
istrative health outcome data, they have generally re­
lied on estimates of exposure in which tbe ambient air 
pollution concentration on each day is used to rep­
resent the exposure of the entire study population. 
Estimating individual exposure to air pollutants from 
central outdoor pollution monitors may result in COD­
siderable error.(3.6) The accuracy of using central OU1­
door air pollution monitors as indicators of personal 
exposure is one component of measurement error in 
such epidemiological studies. 

The impacts of measurement error on the 
exposure-response reialionship have been addressed 
recently by Zeger and colleagues, (7) who present a 
framework for evaluating the impact of measurement 
error and describe how the inadequate characteri­
zation of personal exposure can bias the magnitude 
of the effect estimates in time series epidemiOlogi­
cal studies of ambient air pollution. Carrothers and 
Evans described how differential measurement error 
of multiple pollutants can lead to biased regression 
coefficients.(8) In addition to the impact on effect esti­
mates, measurement error may also affect the ability 
to observe a threshold level, should one exist. 

Cakmak and colleagues performed simulations 
to evaluate whether nonparametric smoothing is ca­
pable of detecting population-level thresholds in the 
presence of exposure measurement error.(~) Spe­
cific functional forms for the relationship between 
population-level risk and ambient concentrations 
were assumed and then simulated Poisson-distributed 
death counts corresponding to simulated log-normal 
ambient concentration levels were anaIY7..ed . These 
simulations examined the ability of different data 
analytic approaches (nonparametric smoothing and 
weighted nonlinear regression) to detect and estimate 
threshold concentrations in the presence of exposure 
measurement error. 

In contrast, we focus specifically on tbe more fun ­
damental question of the impact of exposure misclas­
sification on the persistence of underlying personal­
level thresholds when personal data are aggregated to 
the population leveL The ability to identify a thresh­
old level is critical to economic valuations(lO) and to 
regulatory standards. (11) 'The issue of thresholds for 
time series studies of particulate air pollution has re­
cently been examined in combined analyses of time 
series data from multiple cities.(lU3) Consistent with 
time series analyses from individual cities, these analy­
ses have indicated that no population-level threshold 
is apparent when flexible modeling approaches are 
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applied to the data. In this article we use measured 
personal exposures in a simulation approach to ex­
amine the extent to which exposure misclassification 
may obscure tbe presence of a threshold concentra­
tion in ecologic exposure-response relationships. 

The inability to observe a threshold may be due, 
in part, to tbe [act that there is a distribution of indi­
vidual exposures in a population.(H.15) Hone assumes 
that all individuals in a population have the same func­
tion relating risk of an effect to the ambient pollutant 
concentrations, tben in a population as a whole there • 
will always be some observed effect, even for very low 
concentrations. This is because some individuals in the 
population will have greater exposures thanothen for 
any given ambient concentration and this will there­
fore result in a distribution of risks. Therefore, even if 
a common underlying threshold does in fact exist at 
an individual level, it may not be possible to observe 
it in a study that uses ambient concentrations to esti­
mate individual exposures. The simulations reported 
here are intended to quantify the extent to which tbis 
may occur. 

Accordingly, we repeatedly measured individual 
personal exposures of a panel of chronic obstruc­
tive pulmonary disease (COPD) patients and eval­
uated the impact of different exposure estimates on 
the population exposure-response relationship. As an 
example. we measured personal exposure to particle 
mass and compared this with sulfate, which is a better 
marker of exposure to ambient particles than fine par­
ticle mass (PM2S) .(1f">,l7) Using the exposure data, we 
then performed simulations to evaluate whether en­
hanced assessment of individual exposure improves 
correspondence between an underlying common in­
dividual threshold and the population-level threshold. • 
In the process of illustrating this example we provide 
a general empiricaL methodology for addressing this 
general issue. 

1. METIIODS 

l.L Exposure Monitoring 

Sixteen subjects, ages >60 years, currently non­
smokers and currently not living with a smoker. with 
physician-diagnosed moderate COPO were recruited 
for the exposure monitoring study. Personal (24-hour) 
particulate (PM25 and SO!- ) exposures were then 
monitored during 5-7 measurement sessions, ran­
domly spaced approximately 1.5 weeks apart. De­
tails are reported elsewhere.(16) Ambient PM2.5 and 
SO;- concentrations were measured during periods 
corresponding to the personal monitoring sessions 

http:population.(H.15
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at five fixed-location monitoring stations within thoe 
Vancouver, Canada study region. 

2.2. Mode1iD& and Simulation 

Our approach involves the estimation of the rc­
lationship between personal exposure and ambient 
(PMLS aod sulfate) concentration, followed by sim­
ulation of the relationship between personal expo­
sure and risk, here defined as lhoe probability o[ deatho 
[Pr(deatb)]. The sequential approach includes analy­
sis of the measured exposure data, the application of 
these estimated relationships to a larger population, 
modeling the individual-level relationship between 
exposure and risk of death, and two final components 
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focused on the simulation of the population average 
risk of death. 

2.2.1. Modeling Assumptions 

2.2.1.1. Analysis of the Rl!iationship Between 
Ambient Concentration and Personal Exposure. For 
the purposes of this illustration, we assume that the 
relationship between personal exposure and ambient 
concentration for each individual is linear. Different 
individuals can bave different slopes and intercepts 
describing this relationship and the variability of the 
residuals can also be different from individual to 
individual. These modeling assumptions are moti­
vated by the form of the measured PM2.5 and sulfate 
data for the 16 subjects (Figs. 1 and 2). However, the 
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same methodological approach could also be used 
with different modeling assumptions (e.g., nonlinear 
relationships). 

More precisely, from the 5-7 days of personal 
monitoring dala collected for each of the 16 subjects 
(i), we fit a linear relationship between the ambient 
concentration (A) and personal exposure (E) on all 
days (j), based on the simple model 

E,; = a, + pjA; + oj; _ (I) 

where oli is the error associated with the fitted rela­
tionship for the itb subject on day j . We assume that 
this error has variance r:Yl. This variance parameter in­
dicates the extent towhich exposures of the ith subject 
track ambient concentrations and has particular rel ­

evance to longitudinal studies of air pollution health 
effects. As indicated in Figs. 1 and 2, variances did ap­
pear to be different across individuals, as one might 
expect given the multiple factors that contribute to 
exposures. a; and p; describe the linear relationship 
between the ambient concentration and personal ex­
posure for tbe i th subject and illustrate exposure mis­
classification in cross-sectional study designs that esti­
mate exposures of an entire community with a single 
ambient monitoring station. 

2.2.1.2. Distributional Assumptions to Simulate a 
Larger Population. The data analysis of the previous 
step gives us 16 triplets of estimates for tbe inter­
cepts ai, the slopes fli' and the error variances Cll-We 
now create a simulated personal exposure profile 
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corresponding to any particular ambient concentra­
tion. We assume that the pairs of intercepts and 
slopes are a sample from a bivariate nonnal distri­
bution and the standard deviations from ao indepen­
dent log-normal distribution. To simulate a popula­
tion of triplets that represent individuals, we draw a 
pair of values from the bivariate distribution of inter­
cepts and slopes and then independently draw a value 
from the distribution of error variances. We had in­
sufficient data to support a particular fonn of depen­
dence between the variances and slopes/intercepts 
and therefore assumed that these distributions were 
independent. This assumption enabled us to describe 
the distribution oftbe parameters over the population 
of individuals in a relatively simpler form. Assum­
ing a trivariate distribution of slopes, intercepts, and 
variances, which also incorporated such dependence, 
would provide a more comprehensive approach but 
also would require a substantially larger data set to 
support the necessary modeling. The means., vari­
ances, and co-variances of these distributions are 
set equal to the sample means, variances, and co­
variances based on the 16 COPD subjects (Table 1, 
Figs. 1 and 2). At any particular ambient concentra­
tion Ai, the personal exposure E;j for the ith indi­
vidual in this population is then simulated according 
to Equation (1), where the errorEi ; is simulated as 
Gaussian with a mean of 0 and variance u? 

2.2.1.3. Assumed Form of the Relationship Be­
tween Individual Risk and Personal Exposure with a 
Given Threshold, O. We model the relationship be­
tween the probability of death for the ith individual 
(P;) and personal exposure (E;) as a deterministic re­
lationship P; = teE;), where to is a piecewise linear 

n.ble I. Paramele,," of PM;t5 and Sulfate Distributions of 
Personal ExPOSllre:Ambient CODCentration Relationships (as 

IX:picted in rip. I a Dd 2) Used in Simul3lions 

Pnameter MeaD Slandard Deviation 

PMl.5 
Slope 0.27 1.78 
Intercept 
u,gSD 
'Slope-inlercepl r 

\4.75

I"- 0.84 

22.8~ 

0.79 

S.....le 
Slope 0.74 0.23 
Intercept 0.03 037 
u,gSD - Hit 0.<8 
Slope-intercept r - 0.72 

'The slope-intercept r rden to the correlatwn coefficienl between 
the estimated slo~ and intercepts. 

threshold [unction (Fig. 3) of tbe form: 

t(E)=Yl+Y2(E - o) if E >0 
(2) 

t(E)=Yl if £:!:;o 

Here we assume that all individuals have a com­
mon threshold 0 that is detennined in advance; be­
low this threshold the probability of dying is constant 
at the baseline level Yl. If the personal exposure ex­
ceeds this threshold o,the risk increases linearly with 
slope 1'2. In a real population one might expect a 
distribution of individual-level thresholds (6), and of 
exposure-response relationships (Y2). Together, these 
components determine an individual's susceptibility 
to a given exposure. For the purposes of our simula­
tions, however, we assumed a common threshold and 
exposure-response relationShip for all individuals so 
as to isolate the impact of variable exposures on the 
relationShip between population risk and the ambient 
concentration. 

2.2.2. Simu.lation 

2.2.2.1. Obtain the Population Risk for the Sim­
ulated Population at a Given Ambient Concentration 
for a Particular Threshold Function (Fixed Values of 
0, JIl, and )0'2) . We now simulate the individual risks 
(P;) at a given ambient level A. The simulated value 
of P;(A) = Pr(death of individual il ambient concen­
tration = A) is denoted by PiCA). We use the sam­
pled values ofthe regression parameters, from Section 
2.2.1.2, to obtain tbe personal exposures for the sim­
ulated population, which in tum are translated into 
individual risks with the threshold function shown in 
Equation (2). 

We denote the population probability of death 
(the probability of death at an ambient concentration 
A for a randomly chosen individual from the popula­
tion) by peA) = Pr(death 1 ambient concentration = 
A). A given ambient level leads to a distribution 
of personal exposures in the simulated population, 
which in turn determines the distribution of the indi­
vidual probabilities of death P; = P;(A).We estimate 
the population probability of death at each ambient 
concentration A as the average of the simulated indi­
vidual probabilities at that ambient concentration: 

(3) 

The size of the simulated population (n = 10,000) was 
chosen to be large enough to control the estimation 
error involved. 
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• 
E (Personal ex.posure [PM2.5 or sulfate]) 

£i&.l. IliUSlralioll of an underlying (illdividual-le~el) thresbold function. 

2.2.2.2. Calibrate the Relationship Between Am­
bient Exposure and Population Risk. By simulating 
population risks as described above for a sequence 
of ambient concentrations, we obtain a relationship 
between ambient concentration and population risk. 
To get realistic values for the parameters YI. and Y2 
of the thresbold function of Equation (2). we var­
ied these parameters until we obtained a relationship 
between population risk and ambient concentrations 
that was compatible with mortality rates in the Van­
couver area. For the choice of .5 = 0, the values of 
Yl and Y2 are varied aDd the simulation in Section 
2.2.2.1 ahove is repeated until the simulated popula­
tion probability of death for an ambient concentra­
tion of 0 JA,g/m3 matches the baseline daily mortality 
(17 per 1,000,000) of the Vancouver area (15) and the 
percent increase per unit of ambient concentration in 
the simulation study matches a target risk function, 
the mortality risk estimates from the WHO Air Qual­
ity Guidelines:{lI) 

% increase in daily mortality = 0.151' PMz.s 

% increase in daily mortality = 0.60' sulfate 

Wc then used these parameter values (Yl = 1.70 x 
10- 6 and 1.70 x 1O-~, }'2 = 7.99 X 10- 9 and 3.20 x 
10- 8 for PM25 and sulfate, respectively) in all the 
simulations. 

Initially, we specify only the functional form and 
we fix the threshold value. We then perform simula­
tions for different values of,s to explore the impact of 
this parameter on the population risk-ambient con­
centration relationship. 

With this approach, we illustrate the extent to 
which a common individual-level threshold is ob­
scured by the error in using ambient concentrations as 
surrogates for personal exposure. In this way, we can 
determine, for example, that if a common underlying 
individual-level threshold exists, it would have to be 
above a certain concentration to manifest itself at the 
population leveL 

3. RESULTS 

Figs. 1 and 2 display the personal exposure versus 
ambient concentration relationships measured for the 
16 subjects for PM2.5 and sulfate, respectively. The dis­
tributions of the key features of these regression fits 
are summarized in Table I. Note that the intercept 
term, which describes the personal cxposure at an 
ambient concentration of 0, is much higher for PMz.s 
than {or sulfate, due to the impact of indoor sources 
and personal activities on personal exposure to PMl.S. 
Also note that the standard deviation of the slopes is 
much larger for the PMZ.5 relationships. reflecting the 
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much greater consistency across subjects in the sulfate 
relationships apparent in Figs. 1 and 2. 

Fig. 4(a-c) depicts some of the results of the sim­
ulation [or PM2.S. Here, three individual-level thresh ­
olds (20, 40, and 60 j..Iglm3) were specified and the re ­
sulting population risk. is ploued against the ambient 
particle levels. No threshold is apparent on a POfu­
lation basis if an individual threshold of 20 j.l.glm is 
specified (Fig. 4(a». Even at higher individual-level 
thresholds, the apparent threshold at the population 
level is 20-30 j.l.glmJ lower than the specified per­
sonal threshold (Fig. 4(b-c». In contrast, for sul£ate 
(}ojg. 5(a-c», the personal-level thresholds closely 
match the population -level thresholds. 

4. DISCUSSION 

In these simulations we have demonstrated that 
the use of surrogate measures that are not highly 
correlated with personal exposures can obscure a 
threshold at the population level, even if a common 
threshold exists for individuals within the population. 

However, if exposure misclassification is reduced by 
the use of appropriate exposure metrics (in this ex­
ample. measured exposures that are highly correlated 
with ambient concentrations), then common underly­
ing individual thresholds result in similar population ­
level thresholds. Although we have conducted these 
simulations for data regarding ambient particulate air 
pollution, the same principles apply to any situation 
where exposure is misclassified by the use of surrogate 
measures to estimate individual exposures. In the Ap­
pendix we describe an analytic derivation of the rela­
tionship between personal exposure and population ­
level risk. 

In our simulations we have assumed that all indi­
viduals in a population ha\'e the same threshold con ­
centration and the same slope of their concentration ­
response relationship. This simple situation was 
examined as it was our intention to isolate the poten ­
tial impact of exposure misc1assification on thresh­
old detection. The simulation and the analytic solu ­
tion could also be generalized to incorporate a more 
realistic scenario with a distribution of individual 
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susceptibilities (both slopes and thresholds), allhough 
tbat W~" not the purpose of tbis exercise. The ob ­
SCUT! ),_ ,l'cslh)lds, as observed in OUf simulations, 
would c1ea:: ly be c\ e n greater if the simulations incor­
porated thresbolds that vary across individuals. Our 
simulations also focused on a single dose-response 
function to illustrate the methodology and general 
findings in one specific. simple, yet realistic, scenario. 
Our goal was to present a general empirical method ­
ology that could also incorporate alternative assump­
tions, such as othe r dose-response functions. 

Although it is generally understood that measure­
ment error and, more specificall y, exposure misclas­
s ification . can lead to biased estimates of effect, the 
impact 00 thresholds has received less attention. Watt 
and colleagues measured PM iO exposures of traffic 
officers and used these data to assess tbe e ffect of 
exposure estimates based on ambient concentrations 
on the sbape of the air pollution exposure-response 
curve.Os) Personal exposures were 6-10 times higher 
than ambient measurements and, in a limited simu­

lation, tbis difference bad the effect of almost com­
pletely obscuring the assumed threshold for health ef­
feclS. Here we have built on that preliminary study by 
generalizing tbe model used in tbe simulations and by 
comparing ambient concentrations and personal ex ­
posures for the same particle measurements. over the 
same averaging period, in a group tbat is representa­
tive of individuals affected by particulate air pollution. 

Although the comparison between PM2.s and sul­
fate is presented here asan example, readers may infer 
tbat personal PMu exposure is the "gold standard" 
agai.nst which PM2.s measured at central monitoring 
sites is to be compared. In truth, the gold standard for 
ambient PM2.s is that component of personal PMu 
that is due to exposure to ambient PM2.S.(18) Sources 
of personal PM2.s tbat do not derive from ambient 
PM2.S, including aUindoor sources, sbo uld not be con­
side red wbe n attempting to assess measurement erro r 
resulting from the use of centrally monitored concen­
trations. Based on the relatively strong correlation be­
twee n centrally monitored and personal sulfate, the 
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correlation between centrally monitored PM2.!i and 
that component of personal PM:.s due to ambient 
PMu is also strong. Therefore, the specific findings 
of this simulation do Dot apply 10 PMl.s. The findings 
do apply to pollutant measures for which the correla­
tion between centraUy monitored concentrations and 
penionalexposures to the ambient pollutant are weak. 
Carbon monoxide and ozone may be examples ofsue h 
pollutants. 

S. LIMITATIONS 

As discussed by Zeger and colleagues. (7) there are 
many causes of exposure misclassification. Here we 
bave shown an example in which misclassificalion oc­
curs due to measurement error and the use of a Don­
specific exposure metric. Using the general methodol­
ogy we have provided would show, for example, tbat 
a reduction in the amount of measurement error in 
our data would lead to improved agreement between 
an underlying individual threshold and that based on 
aggregated population-level data. Additionallimita­
tions in the data that we used for the simulation are 
the low concentrations tbat were measured in relation 
to the thresholds that were assumed for the simula­
tions and the small numbcrofrepeated measurements 
(5-7) for each subject. It is possible that for examples 
witb higher ranges of exposures tbe correlations be­
tween personal and ambient measurements would be 
higber. As witb the reduction in measuremcnt error, 
this would lead to a smaller difference between appar­
ent and underlying thresholds. Further, while it was 
our intention to recruit more subjects and to collect 
more repeat me asurements, this was not feasible lo­
gistically. The simulations we have described could be 
repeated if larger data sets become available. Finally, 
the results of the simulation exercises depend on the 
specific form of risk function that is used. In our ex­
ample we used a function from the WHO Air Qual­
ity Guidelines, although the methodology allows any 
[unction to be used. These limitations indicate that 
our quantitative results are sensitive to the input data 
used. However, the methodology and analytical solu­
tion that we present are general and can be applied 
to other data sets. Further, our general illustration 
of the ability of exposure misclassification to obscure 
thresholds remains despite these limitations. 

6.. CONCLUSION 

The identification of threshold levels is impor­
tant [or regulatory standards, risk assessments, and 
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economic valuations, which are often incorporated 
in cost-benefit analyses.. Specifically, for environmen­
tal exposures such as air pollution, which tend to be 
episodic. concentrations tend to be low for the ma­
jority of the time. In performing economic valuations 
or risk assessments, a decision must be made as to 
whether the given exposure-response relationship is 
applied to low levels, or if some threshold is set under 
which it is assumed that no effects occur.(II) Exactly 
what level is chosen for this threshold can have a dra­
matic inftuence on the results of the assessment, since 
concentrations in many locations are below these lev­
els most of the time. For standard setting, regulators 
often are faced with a dilemma of incorporating epi­
demiological results that do not indicate a threshold, 
with regulatory requirements that stipulate that a spe­
cific level should be indicated. The results described 
in this simulation suggest that tbe inability to detect a 
threshold in many epidemiological studies does not, 
in fact, mean that no threshold exists. Further, the 
results oflhis simulation imply that improved charac­
terization of exposure will improve the ability of epi­
demiological studies to identify threshold levels that 
are consistent with those actually experienced by the 
individuals in the study population. 

APPENDIX 

Evaluation or the Population Risk 

The body of the article described how we simu­
lated a population of personal exposures that leads 
to a distribution of individual riskS and hence to an 
estimate of the population risk (probability of death) 
at a given ambient exposure level. Here we present 
the corresponding analytical expressions. 

In what follows. relationships are considered for 
a fixed day, so the argument corresponding to the day 
(j) is suppressed in all tbe expressions. We modeled 
the personal exposure Eo for the itb individual on a 
day with ambient exposure A as 

Eo=aj+{JjA+6/ 

where £j was assumed to be normally distrihuted with 
mean 0 and variance al. This assumption specifies the 
conditional distribution of tbe personal exposure Ei 
given tbe ambient exposure A and the individual's 
vector of parameters 8, = (a j, {Ji, ai l. 

Individuals are characterized by their vector of 
parameters 8" which are distributed across the pop­
ulation according to a trivariate density 1l"(8,). In the 
simulations, we assumed that the slope and intercept 
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parameters (0:;, P;) were bivariate nonnal and the 
variances (u?) were independently log-normal. in 
which case n(6;) factors into a product of bivariate 
normal and log-normal densities. 

The probability of death for the ith individual, 
p., was modeled as a deterministic function to of 
the personal exposure: Pi = t (S) = tea; + P;A+ £j), 

The error term 6; in tbis expression implies tbat,given 
the individual's vector of parameters 91• the probabil­
ity of death for the ith individual is a random quantity. 
Thus, interest focuses on the expected probability of 
death for the ith individual, which is given by 

P(AI91) = f tea; +'sjA+O"iZ)cP(z)dz, 

the quantity estimated by tbe simulated individual 
risk Pi (A); see Equation (3). The corresponding ex­
pected population risk (probability of death) is given 
by 

P(A) = JP(A 19/)n;({/j)d9i 

the quantity estimated by ~(A) of Equation (3) . 
For the special case (2) of the threshold function 

t(.) used in the simulations, we have 

' -	 Ca, + P,A))
P(AI 9;) = Yl + l'2U i W( 0'; 

where W(u) = ¢>(u) - u[1 - <I>(u)), with ¢>(.) and <1>(.) 
the standard normal density and distribution func­
tion, respectively. Evaluation of the expected popu­
lation risk when the ambient exposure is A then re­
quires three-dimensional integration of this function 
with respect to n(9;), the joint trivariate distribution 
of the parameters. Some simplification results from 
the assumption made in the simulations tbat 0', is dis­
tributed independently of (a;, Pi), but this evaluation 
(and the simulations) would be no more difficult for 
other choices of distributions for these parameters. 

We 	modeled the relationship between tbe per­
sonal exposure and tbe individual risk as a determin­
istic thresbold function 1(-) that is the same for all in­
dividuals.1bis could easily be generalized in a variety 
of ways, but we do not pursue this bere. 

This Appendix has focused on evaluation of the 
expected population risk (probability of death) as tbat 
is the function estimated in the simulations reported 
in the article. Expressions could also be obtained for 
other functions of the distribution o[ personal expo­
sures. For example, an expression for tbe distribution 
of individual risks when the ambient exposure is A 
could be obtained. In general, explicit evaluation of 
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such expressions would still require multidimensional 
integration. 
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