

Proposed NSPS for GHG Emissions

Bruce Rising, Vice Chair Environmental Affairs Committee

August 1, 2013

- Alstom Power
- GE Energy
- Florida Turbine Technologies
- Meggitt Sensing Systems
- Pratt & Whitney Power Systems
- Rolls-Royce
- Siemens Energy, Inc.
- Solar Turbines Incorporated

GTA Recommendations

- Maintain exclusion of simple cycle gas turbines
- Raise the CO₂ level to at least 1,100 lb/MWh
- Prohibit the NSPS CO₂ limit from being adopted as the presumptive CO₂ BACT level for simple cycle turbines
- Include exemption for startup/shutdown and part load operation
- Allow an alternate method to CEMs for compliance measurement
- Modify method for computing the 12-month rolling average
- Exempt combined heat and power units
- Allow 500 hours of operation on backup fuel without inclusion in the emission average

Simple Cycle Exclusion

- GTA supports exclusion of simple cycle systems
- Simple cycle gas turbines are highly flexible and react rapidly
 - Enable renewable integration through enhanced grid stability
 - Rapid starts/stops and load/unload rates
 - Grid frequency & voltage regulation
 - Peak shaving, backup power, rapid installation for new demands
- NGCC while flexible, cannot substitute for simple cycle
- Many simple cycle units run more than 2,900 hours per year
 - Particularly in support of renewable generation sites
- Proposed range of 950 1,100 lb/MWh does not reflect BSER* for SC
- Exclusion provides no incentive for simple cycle over NGCC

*Best System Emission Rate

1 Aug 2013 Washington, DC

Donghal proposal had exempt for faultis

upway very than y3 of the year

Page 4

Increase CO₂ limit to 1,100 lb/MWh Limit

- Only gas fired combined cycle turbines have the efficiencies to reach this threshold.
- But even they cannot all achieve this
 - Requires pipeline natural gas (not fuel oil)
 - Site conditions, part-load operation, design features, and operating hours all tend to raise the emissions expressed on an output basis
- · Simple cycle turbines cannot reach this threshold
- While new cycle design features continue to be introduced, pre-2006 turbine designs are still manufactured and sold to support customer needs.

Operating Conditions

- Part load operation results in reduced cycle efficiency, increasing the emissions output
 - Part load is a necessity in cases where fast starting and ramping are required (e.g. support renewable energy generation, such as wind or solar)
- Site conditions substantially impact output based emissions
 - High ambient temperatures erode efficiency
 - Cooling system designs (open loop cooled vs. air cooled systems) have a major impact

Compliance Monitoring

- Monitoring can be more effectively and accurately accomplished by fuel flow monitoring
 - All gas turbine systems include high accuracy flow monitors
 - Fuel carbon content is relatively constant (75% by mass for natural gas). Pipeline tariffs maintain a relatively consistent composition
 - Performance (Megawatt-hours generated) is well measured and recorded (data filed to FERC)
 - This will produce greater accuracy in determining output based emissions compared to CEMS data.

CHP/Cogen Exemption

- Recommend exemption for gas turbines in the CHP category
 - They represent a category of very efficient system systems for power and thermal energy production
 - Thermal energy is recovered from a simple cycle turbine exhaust, but not necessarily to produce electricity
 - But some Combined Heat and Power also produce electricity
- It is difficult to quantify the thermal energy in terms of equivalent kWh to determine compliance of combined heat and power with the proposed NSPS would be immense and impractical
- Some CHP units also make use of a unique fuel that may be produced in-house
 - May be substantially different from pipeline natural gas or No. 2 Fuel Oil.
 - Additional support for an alternative fuel exemption, in addition to a category exemption

Fuel Choice

- The proposed standard is only likely to be achieved using pipeline natural gas fuel
 - While most gas turbines in the US are gas-fired, there is still a segment of the fleet that still uses fuel oil.
 - Fuel oil backup provides operating flexibility, especially on peaking units not committed to long-term gas contracts.
 - Operating with a few hundred hours of on fuel oil would push a combined cycle above the threshold, even using annualized averaging methods
- Exempt from reporting CO₂ emissions when operating fuel oil,
 alternative fuels (e.g. landfill gas, blast furnace gas)

Impact of Load on CO₂

Impact of Ambient Temperature

Impact of Fuel

Cumulative Impact of Operating Conditions, Design, Site Conditions, and Fuel

Cumulative Impact of Operating Conditions, Decadal Data Summary

Cumulative Impact of Operating Conditions, Decadal Data Summary

Reported Monthly CO2 Emissions, Multiple Sites (Simple Cycle Gas Turbines)

Reported Annual CO2 Emissions, Multiple Sites (Simple Cycle Gas Turbines)

GTA Recommendations

- Maintain exclusion of simple cycle gas turbines
- Raise the CO₂ level to at least 1,100 lb/MWh (for a combined cycle)
- Prohibit the NSPS CO₂ limit from being adopted as the presumptive CO₂ BACT level for simple cycle turbines
- Include exemption for startup/shutdown and part load operation
- Allow an alternate method to CEMs for compliance measurement
- Modify method for computing the 12-month rolling average
- Exempt combined heat and power units
- Allow 500 hours of operation on backup fuel without inclusion in the emission average