Sulfur Preconditioning Impacts: Why Existing Data Understates the Impact of Sulfur on Emissions

SAE Government/Industry Meeting April 28, 1999

Takafumi Nishikawa, Toshihisa Yamaguchi, Hideki Uedahira HONDA R&D CO., Tochigi R&D Center John German, American Honda Motor Co.

Chemistry of Catalysis

- Successful catalysis depends on the formation of labile chemical bonds
- Elements that bond strongly to catalyst sites have the effect of "poisoning" the catalyst
- Sulfur can bond with both precious metal surfaces, especially Pd, and with ceria
- Reactions are very complex and are strongly affected by air/fuel ratio and temperature
- 1997 Report by CE-CERT summarized existing data
 - "Potential for Improved Sulfur Tolerance in Three-Way Automotive Catalysts", Timothy Truex, CE-CERT, Univ. of California-Riverside, November 26, 1997

CE-CERT: Sulfur Interaction with Pd

	Adsorption	Removal
Lean	SO ₂ chemisorbs only below 500°C	S _{ad} removal at temperatures >650°C
Stoichiometric	SO ₂ dissociatively adsorbed to form strongly adsorbed S _{ad}	
Rich	SO ₂ dissociatively adsorbed to form strongly adsorbed S _{ad}	S _{ad} removal at temperatures >750°C

Sulfur migrates into bulk Pd

- Greater sensitivity
- Much slower in reaching equilibrium conditions
- Tendency towards irreversible poisoning

CE-CERT: SO₂ Reactions with Ceria

	Adsorption	Removal
Lean	Ce ₂ (SO ₄) ₃ formed (reduces catalyst O ₂ storage capacity)	Ce ₂ (SO ₄) ₃ slowly decomposes at temperatures >650°C
Stoichiometric	Ce ₂ (SO ₄) ₃ formed (reduces catalyst O ₂ storage capacity)	
Rich		Ce ₂ (SO ₄) ₃ rapidly decomposes at temperatures >600°C

Honda R&D Theory of Sulfur Adsorption

Sulfur Conditioning Considerations

- Sulfur adsorption is depend on catalyst temperature
- Catalyst temperature must be below 500°C for rapid sulfur adsorption

New Honda Catalyst Conditioning Sequence

Maintain Catalyst temperature at 450°-500°C determined by monitoring catalyst temperature Until full sulfur adsorption determined by monitoring exhaust SO2

Instrumentation

Honda Sulfur Adsorption Method

At first, all sulfur is adsorbed, so tailpipe SO₂ is 0 ppm

After full adsorption, tailpipe SO₂ is 18 ppm

Testing on Vehicle #1

EPA Draft Conditioning

Honda Conditioning

Catalyst temperature: 450°-500°C

About 35 m/h Cruise

Until full adsorption

- Test sequence:
 - FTP using 40 ppm fuel
 - Conditioning procedure using 350 ppm fuel
 - FTP using 350 ppm fuel
 - Consecutive FTPs using 40 ppm fuel

Vehicle #1: Test Results

Conclusions for Vehicle # 1

- No sulfur non-reversibility was found using the EPA Draft Conditioning procedure
- Honda conditioning method had higher sulfur sensitivity and about 20% non-reversibility
- EPA's draft sulfur preconditioning method did not load enough sulfur on the catalyst
 - Catalyst temperature was too high on the highway cycle and the preconditioning was too short

Comparison to Extended In-Use Driving

- To evaluate the representativeness of the Honda conditioning method, a second vehicle was run on the dyno for 10k miles representing city-type driving:
 - Mileage accumulation consisted of cruises at different speeds ranging from 25 to 60 mph, interspersed with accelerations
 - Catalyst temperature generally ranged between 500°C and 600°C, with temperature spikes as high as 750 °C
- Test results were compared to:
 - Honda preconditioning method (identical to vehicle #1)
 - AAMA/AIAM preconditioning method (instead of draft EPA)

Test Results on Vehicle # 2

Conclusions for Vehicle # 2

- The 10k dyno conditioning generated sulfur effects similar to the Honda preconditioning method
- The non-reversible sulfur effects on this vehicle were even higher than vehicle #1, both on the 10k dyno and the Honda preconditioning tests
- Although there was some non-reversibility with the AAMA/AIAM preconditioning on this vehicle,
- the AAMA/AIAM method drastically underpredicted the impact of sulfur on reversibility

In-Use versus Preconditioning Conditions

- Average in-use vehicle speeds (EPA's SFTP data):
 - Baltimore: 24.5 mph
 - Los Angeles: 28.3 mph
 - Atlanta: 28.8 mph
- Sulfur preconditioning conditions:
 - LA-4 cycle: 19.7 mph average
 - Highway cycle: 48 mph average
 - Honda's preconditioning procedure: 35 mph cruise
 - Honda's 10k conditioning: 25 to 60 mph cruises/accels
 - Recent EPA road aging: approx. 40 mph average

Conclusions

- In-use, vehicle speeds and, thus, catalyst temperatures are usually low
- Highway cycle, Honda 10k conditioning, and EPA's recent road aging generate higher catalyst temperatures than are usually found in-use
- The LA-4 generates representative catalyst temperatures, but previous test programs did not run enough LA-4 cycles to saturate the catalyst
- Honda preconditioning method uses appropriate catalyst temperatures and ensures saturation
- Existing data likely understate sulfur impacts by a factor of about two