Chromium Electroplating and Anodizing Proposed MACT Rule

National Association for Surface Finishing
Meeting with
Office of Information and Regulatory Affairs
January 27, 2012

Christian Richter
crichter@thepolicygroup.com
202-257-0250
Jeff Hannapel
jhannapel@thepolicygroup.com
202-257-3756

Summary

- No Need to Revise Successful Existing Standard
- No Significant Risk
- No New Technology
 - New Technology (Non-PFOS Alternatives) Less Effective
 - No Data to Support Technology Solution
- No Environmental Benefits
 - No Emissions Reductions
 - No Risk Reduction
- Proposed Rule Is NOT Cost-Effective
- No Co-Benefits from Reduction of Criteria Pollutants
- Compliance Costs Would Impose Unnecessary Burden on Industry without Any Benefit
- No Reasonable Basis to Support Proposed Rule

U.S. Cr6 Electroplating Industry Emissions

(from 1995 NESHAP to present, in tons per year)

A Major Clean Air Act Success - 173 TPY to ~ 0.5 TPY

USEPA's U.S. Population Exposure Estimates for Cr6 Electroplating w/no further revisions to NESHAP

(USEPA's # of U.S. individuals exposed down by 98.7% per data corrections - But OAQPS estimates still overestimate exposure & residual risk)

Chromium Electroplating and Anodizing EPA's Maximum Individual Risk Analysis

MIR (x 10 ⁶)	Number of Facilities (out of 1500)	Percentage of Total
> 20	1	< 0.1
10 to 20	13	< 1.0
5 to 10	12	< 1.0
1 to 5	249	16.6
< 1	1225	83.4

EPA Has Greatly Over-Estimated Emissions and Ambient Concentrations of Cr(VI) and Risks

- EPA's Modeled Ambient Concentrations Exceeded Its Own Urban Air Toxics Monitoring Program Levels by a Factor of 5 (particularly for Higher Risk Facilities)
- Estimated Emission Rates Assumed Worst Case Scenarios
 - Emissions for more than 90% of facilities were based on inaccurate model plants, not source-specific data
 - Model plant emission rates from circa 1990 do not reflect implementation of controls due to EPA, OSHA and state requirements
 - EPA model plant emission rates based on high-end 94th percentile rather than mean or median
 - EPA used worst case default assumptions about facility size and subcategory (hard, decorative, or anodizing) for all facilities where data was not available (most)
 - Emissions do not reflect facility closures and reduced operations due to recession
 - We believe EPA has likely overestimated Cr(VI) emissions by roughly one order of magnitude
- Inappropriate Assumptions in Dispersion Modeling for Cr(VI)
 - EPA assumed that 100% of chromium emissions were hexavalent and did not account for rapid reduction to trivalent chromium in ambient air
 - EPA did not account for wet and dry deposition of hexavalent chromium and plume depletion
 - EPA ran model in "rural" rather than "urban" mode, so less mixing and dispersion near emission source
- Monitored Ambient Levels of Hexavalent Chromium (Reflecting ALL Sources) Are Lower than EPA's Modeled Ambient Projections for Electroplating and Anodizing Alone
 - Even Though Surface Finishing Accounts for ONLY 1% of Total Cr(VI) Based on 2005 NEI

Lower Surface Tension Levels

- Existing Limits Achieved with PFOS Fume Suppressants
- PFOS Phased Out as Part of Rule
- Non-PFOS Alternatives No Data
- Currently at Levels of Diminishing Returns
- No Corresponding Reduction of Emissions
- Not Cost Effective

Lower Emission Limits

- Significant Reductions
 - 20% for decorative and anodizing
 - 50% for small hard chrome (85 of 300 facilities would not meet limit)
 - 26% for large hard chrome (41 of 181 facilities would not meet limit)
 - 40-60% for new sources
- Simply Adding Fume Suppressants and/or Tweaking Existing Controls Would Not Be Sufficient to Meet the Proposed Limits
- No Data to Support Use of Non-PFOS Fume
 Suppressants Technology to Achieve New Limits

Compliance Costs

- EPA Compliance Costs Unrealistically Low
 - Capital costs of \$3.5 million
 - Annual costs of \$1.0 million
 - Average facility cost approximately \$1,000
- Corrected Compliance Costs
 - Fume suppressants \$5/operating hour (\$10,000/yr.)
 - Non-PFOS fume suppressants required more labor to monitor surface tension levels more frequently
 - Stack test \$6,000 to \$10,000
 - Maintenance of existing controls \$6,000 to \$10,000
 - Replacement of mesh pads \$15,000 to \$40,000
 - Add HEPA filter to existing controls \$5,000 to \$40,000
 - Increase costs for technical consultants
 - Average facility cost approximately \$10,000 to \$60,000
 - Costs more consistent with experience in California
- Even Modest Increases in Compliance Costs Could Negatively Impact the Industry Due to the Precarious Economic State of Most Facilities

Cost Effectiveness

- Even at EPA's Unrealistically Low Compliance Cost Estimates, Proposal Is NOT Cost Effective
 - Surface Tension Levels Over \$9,000/lb. of hexavalent chromium emissions reduced (assuming minimal \$350 annual increase)
 - Emission Limits \$40,000/lb. of hexavalent chromium emissions reduced (assuming modest \$10,000 annual increase)
 - Options even less cost effective with more realistic cost estimates
- EPA Rejected HEPA Filter Technology Based on Cost Effectiveness (Over \$15,000/lb.)
- Technology Identified by EPA Is Even Less Cost Effective When Emissions Estimates and Compliance Costs Are Corrected